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Dirac Equation in Space–Time With Torsion
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The Dirac equation in a curved space–time endowed with compatible affine connection is
reconsidered. After a detailed decomposition of the total action, the equation is obtained
by varying with respect to the Dirac spinor and the torsion field. The result is a known
Dirac-like equation with constraints that can be interpreted as the equation of a self-
interacting spin 1/2 particle in curved space–time. The scheme is then translated into
the language of the 2-spinor formalism of curved space–time based on the choice of a
null tetrad frame. The spinorial equation so obtained coincides with the standard one
in case of no torsion, while in general it remains a nonlinear equation describing a
self-interacting spin 1/2 particle. The nonlinearity is produced by the interaction of the
particle with its own current that remains conserved as in the free torsion case.
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1. INTRODUCTION

Among the different formulations of the Dirac equation in curved space–
time, the one that includes the torsion is of interest. This gives additional degrees
of freedom to the theory that could be used to describe further physical interactions.
Torsion effects were already considered by G¨ursey (1957) and Finkelstein (1960)
(see references in these papers). They both found a nonlinear spinor equation, even
starting from slightly different assumptions of uniform torsion. Nonlinear terms
induced by torsion in the Dirac equation have been discussed also by Hehl and
Datta (1971) and Hehlet al. (1976) (see references therein) in their general study
of spinor equations in general relativity.

Recently the Dirac equation with and without torsion and under different
approximations has been employed to study neutrino oscillations in curved space–
time. To mention some results, we recall, for instance, that Pirizet al.(1996) have
focused on the case of strong gravitational field; Cardall and Fuller (1997) have
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developed a study of the gravitational contributions to neutrino spin precession
in presence of magnetic field. Alimohammadi and Shariati (1999) extended the
study by Cardall and Fuller to explore the effect of torsion on neutrino oscillations;
similarly Zhang (2000) developed the formalism in case of zero curvature but of
nonzero torsion space–time. The theoretical scheme adopted for the description of a
spin 1/2 particle in space–time with torsion is based on a Lagrangian, invariant both
on general coordinates and on local Lorentz rotations, whose explicit expression
can be found, for instance, in the books by Nakahara (1990) and Buchbinder
et al. (1992) (compare also with Weinberg, 1972). The treatment is generally
done in the four-dimensional spinor formalism and is based on an orthogonal
tetrad.

Since the two spinor version of this theory seems to lack in the literature, it
is of interest to have the counterpart of it in the language of Newman and Penrose
(1962) formalism. Of course this could be done by promoting the spinor covariant
derivative of the spinorial Dirac equation in curved space–time (as it appears, for
instance in the book by Penrose and Rindler, 1983) to include torsion. However, as
a consequence of general properties of the affine connection, this amounts to add to
the standard covariant spinor derivative a spinor term whose physical interpretation
seems difficult to define a priori.

In order to translate the scheme into the language of two-dimensional spinor
formalism, some basic definitions and properties of space–time with affine con-
nection are first recollected. This leads to the explicit form of the Einstein–Hilbert–
Cartan action. The expression of the Dirac action is developed as far as possible by
considering all its terms, also those sometimes neglected in physical applications.
The field equations are obtained by varying the total action with respect to the
Dirac spinor and the torsion field. There comes out a Dirac-like equation with con-
straints that can be interpreted as a nonlinear Dirac equation in curved space–time
describing a self-interacting spin 1/2 particle.

The result is then transformed into the two-dimensional spinor formalism by
using standard representation of the Dirac matrices on general null tetrad frames.
The result is checked in the torsion free case: one obtains exactly the Dirac equa-
tion as written in Chandrasekhar’s book (1983) in terms of spin coefficients and
directional derivatives. In case of nonzero torsion the nonlinear terms can be in-
terpreted as the interaction of the particle with its own spinorial current. It comes
out that the current is conserved as in the torsion free case.

2. SPACE–TIME WITH TORSION

In the following the space–time is assumed to be a four-dimensional Lorentz
manifold (M , g) endowed by an affine connection∇ (we refer to Nakahara (1990)
for notations and mathematical conventions). The affine connection∇, whose
affine coefficients are denoted0λµν , is required to realize ametric compatible
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connection∇λgµν = 0 that is

∂gµν − 0κλµgκν − 0κλνgµκ = 0. (1)

The Levi–Civita connection, denoted̃∇ and acting on the same space–time, is
the one arising from the metric tensor through the Christoffel coefficients{ κλν} =
1
2gκλ(∂µgνλ + ∂νgλµ − ∂λgµν). A central point in the mathematical theory is that
the relation between∇ and∇̃ is expressed by

0κµν =
{
κ
µν

}+ K κ
µν (2)

where the contorsion tensorK κ
µν is defined through the torsion tensorTκ

µν =
0κµν − 0κνµ by means ofK κ

µν ≡ 1
2(Tκ

µν + Tκ
µν + Tκ

νµ). Since also∇̃µgαβ = 0, the
decomposition (2) inserted in (1) implies the symmetry property of the contorsion
tensor

Kλµν = −Kνµλ. (3)

As in the free torsion case, the Riemann curvature tensorRκλµν can be entirely
expressed in terms of the affine connection coefficients

Rκλµν = ∂µ0κνλ − ∂ν0κµλ + 0ηνλ0κµη − 0ηµλ0κνη (4)

As a consequence of the decomposition (2), the Riemann curvature tensor itself
can be separated into a part completely expressed by the Christoffel symbols and
a part containing the contorsion. The same decomposition property holds then
for the Ricci tensorRλµλν and for the scalar curvatureR= gµνRλµλν . To make the
results more clear and for the following purposes it is convenient to preliminary
decompose (see, e.g., Alimohammadi and Shariati, 1999) also the contorsion in
the form

Kαµν = 1

3
(gαµτν − gνµτα)+ 1

2
Aσ εσαµν +Uαµν (5)

where it has been defined

τµ = gαβKαβµ, Aσ = 1

3
εσαβµKαβµ. (6)

The termUαµν is infact determined by Eq. (5) and it has therefore the properties

Uαµν = −Uνµα, gαµUαµν = 0, εσαµνUαµν = 0. (7)

By using Eqs. (2), (5–7) into the expression (4) one gets, with some rearrangements

R= R̃− 2√
g
∂κ (
√

gτ κ )− 1

3
τ 2+ 3

2
A2+UαµνU

µαν (8)

whereg = |detgµν | andR̃ is the part expressed in terms of the Chrisoffel symbols
alone not containing the contorsion tensor. The field equations can then be obtained
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by varying the Einstein–Hilbert–Cartan action

SEHC =
∫

d4x
√

g

(
R̃− 1

3
τ 2+ 3

2
A2+UαµνU

µαν

)
(9)

with respect to the metric and the contortion tensor fields. The divergence term in
(8) has been neglected in the action because no variations of the boundary will be
considered.

3. DIRAC EQUATION WITH TORSION

The description of a Dirac spinorψ in the four-dimensional Lorentz manifold
M can be done in general by a well-known scalar action whose Lagrangian is a
scalar both under coordinated change and Lorentz rotations. To do this leteµa
be a local reference frame (tetrad), with associated inverse matrixeb

ν , defined by
(Nakahara, 1990; Weinberg, 1972)

gµν = ea
µeb
νηab; ηab = eµa eνbgµν (10)

ηab = ηab = diag (1,−1,−1,−1) the Minkowski metric. Tetrad indices are de-
noted by latin letters, coordinate indices by greek letters. Given the Dirac matrices
satisfying{γ a, γ b} = 2ηab theγ µ matrices defined byγ µ = eµa γ a satisfy the re-
lations{γ µ, γ ν} = 2gµν . The mentioned action is then given by (Nakahara, 1990;
Weinberg, 1972)

SD =
∫

d4x
√

gψ̄
[
i γ aeµa (∂µ +Äµ)+m

]
ψ. (11)

As usualψ̄ = ψ+γ o. The term involving the spin connectionÄµ is defined by

γ µÄµ = −1

8
eµa eνb(∇µecν)γ

a[γ b, γ c]. (12)

By considering that (Cardall and Fuller, 1997)

γ a[γ b, γ c] = 2ηabγ c − 2ηacγ b − 2i γ5γdε
dabc (13)

whereγ5 = diag (I2,−I2), {γ a, γ5} = 0 and by writing alternatively

∇µecν = ∇̃µecν − K λ
νµecλ (14)

∇̃µecν = ecν,µ + ecµ,ν

2
+ ecν,µ − ecµ,ν

2
− {λν µ}ecλ (15)

the product in (12) can be developed by taking into account symmetry properties
in the exchange of some of the indices involved. One obtains

γ aeµaÄµ =
i

4
γ µγ5ebµ(ecν,σ − ecσ,ν)ε

bcadeµa eσd −
1

2
γ λec

λ∇̃νeνc

+ 1

4
γ λτλ + 3

4
i γ λγ5Aλ (16)
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Therefore the Dirac action can be written more explicitly

SD =
∫

d4x
√

gψ̄
{
i γ µ

[
∂µ + i γ5

(
AG

1µ + AT
1µ

)+ AG
2µ + AT

2µ

]+m
}
ψ (17)

where

AG
1µ =

1

4
ebµ(ecν,σ − ecσ,ν)ε

bcadeµa eσd , AT
1µ =

3

4
Aµ,

AG
2µ = −

1

2
ec
µ∇̃αeαc , AT

2µ =
1

4
τµ.

(18)

AlternativelyAG
1µ andAG

2µ can be expressed in terms of the spin coefficients (Ricci
rotation coefficients, see Chandrasekhar, 1983) defined byγabc= eνa(∇̃µebν)e

µ
c .

From Eqs. (12)–(14) one readily finds

AG
1µ = −

1

4
εdabcγbcaedµ, AG

2µ = −
1

2
γ ad

aedµ. (19)

This form will be useful when passing to two-dimensional spinors. The term
containing torsion has been distinguished by the label T the remaining terms
by G.

The field equation of the spin 1/2 particle coupled to gravity can now be
obtained by varying the total actionS= SD + SEHC whereSD, SEHC are given by
(17) and (9), with respect to the fields̄ψ , Uαµν , τµ,Aµ. One obtains

γ µ
[
∂µ + i γ5

(
AG

1µ + AT
1µ

)+ AG
2µ + AT

2µ

]
ψ = imψ (20)

Uαµν = 0 (21)

τµ = 3

8
i ψ̄γ µψ (22)

Aµ = 1

4
ψ̄γ5γ

µψ (23)

(Note that the absense of particle givesτµ = Aµ = 0 so that no nontrivial torsion
is possible in this case.) The Eq. (20) is subjected to the constraint (22) and (23).
By taking into account the definitions (18), the equation can be written

γ µ
[
∂µ + i γ5AG

1µ + AG
2µ +

3

16
i ψ̄γµγ5ψ + 3

32
i ψ̄γµψ

]
ψ = imψ. (24)

It is possible to translate the previous results into the languages of the two-
dimensional spinors formalism of Newmann and Penrose, 1962.
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4. DIRAC EQUATION IN TWO SPINOR FORM

The tetradeµa of Eq. (10) is now chosen to be

ηab ≡


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (25)

One can then check that by mimicking the procedure of the previous section, the
same final results (20), (17) still hold, the only difference being thateµa is now a null
tetrad frame. To simplify notations it is convenient to denoteeµ1 ≡ lµ, eµ2 ≡ nµ,
eµ3 ≡ mµ, eµ4 ≡ m?µ (with lµ, nµ real; m?µ = mµ?). Thereforelµlµ = nµnµ =
mµmµ = m?µm?

µ = 0, lµnµ = 1, mµm?
µ = −1. Associated to the null tetrad

frame there are then the 4× 4 Dirac matrices

γµ =
√

2

(
0 Gµ

−G?
µ 0

)
, {γµ, γν} = 2gµν I4 (26)

(G? is the adjoint ofG, see e.g. Penrose and Rindler, 1984) that still satisfy the
usual anticommutation relations. This is a consequence of the definition of theG
matrices in terms of the spin matrices

Gµ ≡ σ A
µB′ ≡

1√
2

(
m?
µ nµ
−lµ −mµ

)
(27)

that in their turn satisfy the relationsGµG?
ν + GνG?

µ = −2gµν I2. By further setting
ψ ≡ (

QA

P̄B′ ) and fromγ5 = −i I 4 one has

σ
µ

B A′∂µPB + σµB A′
(
AG?

1µ + AT?
1µ − AG?

2µ − AT?
2µ

)
PB = −i

m√
2
Q̄A′

(28)
σ
µ

B A′∂µQB + σµB A′
(
AG

1µ + AT
1µ − AG

2µ − AT
2µ

)
QB = −i

m√
2
P̄A′ .

The expressionsσµB A′∂µ = ∂B A′ are the directional derivatives generally de-
noted∂00′ = D = lµ∂µ, ∂01′ = δ = mµ∂µ, ∂10′ = δ? = m?µ∂µ, ∂11′ = 1 = nµ∂µ.

We first consider the torsion free case. Denoting as usual the spin coefficients
(Chandrasekhar, 1983)

ρ = γ314 ε = 1

2
(γ211+ γ341) π = γ241 α = 1

2
(γ214+ γ344)

(29)

µ = γ243 γ = 1

2
(γ212+ γ342) τ = γ312 β = 1

2
(γ213+ γ343)
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one can simplify the expressions

√
2σµB A′

(
AG

1µ − AG
2µ

) = (−δd2 δd4

δd3 −δd1

)(
1

4
εdabcγbca− 1

2
γ ad

a

)
=
(
ε − ρ β − τ
π − α µ− γ

)
(30)

(δdi is the Kronecker delta). The Dirac Eq. (28) then becomes in terms of the spin
coefficients and directional derivatives

(
√

2D + ε? − ρ?)Po + (
√

2δ? + π? − α?)P1 = −imQ̄0

(
√

2δ + β? − τ ?)Po + (
√

21+ µ? − γ ?)P1 = −imQ̄1
(31)

(
√

2D + ε − ρ)Qo + (
√

2δ? + π − α)Q1 = −imP̄0

(
√

2δ + β − τ )Qo + (
√

21+ µ− γ )Q1 = −imP̄1

that coincides, after redefiningÄµ→
√

2Äµ, with the Dirac equation as consid-
ered in Chandrasekhar (1983) (see also Zecca, 1996). Hence it can be compactly
written (µ? = m/

√
2)

∇̃AB′P
A = −iµ?Q̄B′

(32)
∇̃AB′Q

A = −iµ? P̄B′

where∇̃AB′ is the conventional covariant spinor derivative in curved space–time
(Penrose and Rindler, 1984).

If the torsion does not vanishes, the Eq. (28) can be interpreted as the Dirac
equation in the two-dimensional spinor formalism. Equation (28) is a nonlinear
equation on account of the terms quadratic inψ arising fromAT

1µ, AT
2µ through

Eqs. (18), (22), and (23). These terms can be further explicited to obtain

σ
µ

B A′
(
AT

1µ − AT
2µ

) = − 9

32
i ψ̄γ µψ

= − 9

32
i (PBP̄A′ + QBQ̄A′ ). (33)

Here it has been used̄ψ ≡ (−PB,Q̄A′ ) (compare also with Illge, 1993). In terms
of the spinorial currentJB A′ = PBP̄A′ + QBQ̄A′ the Eq. (28) can now be written

∇̃B A′P
B + icJB A′P

B = −iµ?Q̄A′
(34)

∇̃B A′Q
B − icJB A′Q

B = −iµ? P̄A′ (c = 9
√

2/32).

As a consequence of Eq. (34) one can check that the currentJB A′ is still conserved,
∇̃AB′ J AB′ = 0, as in the torsion free case (e.g. Zecca, 1995). It is worth noticing
that the two equations in (34) remain coupled (contrarily to the torsion free case)
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also in the massless case. For what concerns the solution of Eq. (34) there are
some particular situations that seem to reduce the difficulty. For instance, in case
of static metric it is easily seen that the time dependence of the solution factors
out in a form like exp(ikt). Nevertheless Eq. (34) remains a nonlinear equation
difficult to be solved.
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